Forensic genetic analysis of bone remain samples

DNA typing from degraded human remains is still challenging forensic DNA scientists not only in the prospective of DNA purification but also in the interpretation of established DNA profiles and data manipulation, especially in mass fatalities. In this report, we presented DNA typing protocol to investigate many skeletal remains in different degrees of decomposing. In addition, we established the grading system aiming for prior determination of the association between levels of decomposing and overall STR amplification efficacy. A total of 80 bone samples were subjected to DNA isolation using the modified DNA IQ™ System (Promega, USA) for bone extraction following with STR analysis using the AmpFLSTR Identifiler ® (Thermo Fisher Scientific, USA). In low destruction group, complete STR profiles were observed as 84.4% whereas partial profiles and non-amplified were found as 9.4% and 6.2%, respectively. Moreover, in medium destruction group, both complete and partial STR profiles were observed as 31.2% while 37.5% of this group was unable to amplify. Nevertheless, we could not purify DNA and were unable to generate STR profile in any sample from the high destroyed bone samples. Compact bones such as femur and humerus have high successful amplification rate superior than loose/spongy bones. Furthermore, costal cartilage could be a designate specimen for DNA isolation in a case of the body that was discovered approximately to 3 days after death which enabled to isolate high quality and quantity of DNA, reduce time and cost, and do not require special tools such as freezer mill.

Keywords: Bone remain; DNA typing; Degraded DNA; Forensic genetics.

Copyright © 2018 Elsevier B.V. All rights reserved.

Similar articles

Zupanič Pajnič I, Zupanc T, Balažic J, Geršak ŽM, Stojković O, Skadrić I, Črešnar M. Zupanič Pajnič I, et al. Forensic Sci Int Genet. 2017 Mar;27:17-26. doi: 10.1016/j.fsigen.2016.11.004. Epub 2016 Nov 19. Forensic Sci Int Genet. 2017. PMID: 27907810

Li B, Lü Z. Li B, et al. Fa Yi Xue Za Zhi. 2017 Aug;33(4):380-382. doi: 10.3969/j.issn.1004-5619.2017.04.010. Epub 2017 Aug 25. Fa Yi Xue Za Zhi. 2017. PMID: 29219269 Chinese.

Mundorff AZ, Amory S, Huel R, Bilić A, Scott AL, Parsons TJ. Mundorff AZ, et al. Forensic Sci Int Genet. 2018 Sep;36:167-175. doi: 10.1016/j.fsigen.2018.07.009. Epub 2018 Jul 10. Forensic Sci Int Genet. 2018. PMID: 30032092

Cavanaugh SE, Bathrick AS. Cavanaugh SE, et al. Forensic Sci Int Genet. 2018 Jan;32:40-49. doi: 10.1016/j.fsigen.2017.10.005. Epub 2017 Oct 18. Forensic Sci Int Genet. 2018. PMID: 29059581 Review.

Wang HP, Liu C, Sun HY. Wang HP, et al. Fa Yi Xue Za Zhi. 2006 Apr;22(2):159-60, S1-2. Fa Yi Xue Za Zhi. 2006. PMID: 16850609 Review. Chinese.

Cited by

Stan E, Muresan CO, Dumache R, Ciocan V, Ungureanu S, Mihailescu A, Daescu E, Duda-Seiman C, Menghiu G, Hutanu D, Enache A. Stan E, et al. Int J Mol Sci. 2024 May 8;25(10):5114. doi: 10.3390/ijms25105114. Int J Mol Sci. 2024. PMID: 38791155 Free PMC article.

Zupanič Pajnič I, Mlinšek T, Počivavšek T, Leskovar T. Zupanič Pajnič I, et al. Sci Rep. 2023 Nov 22;13(1):20463. doi: 10.1038/s41598-023-47836-9. Sci Rep. 2023. PMID: 37993531 Free PMC article.

Tomsia M, Droździok K, Banaszek P, Szczepański M, Pałasz A, Chełmecka E. Tomsia M, et al. Forensic Sci Med Pathol. 2022 Dec;18(4):442-449. doi: 10.1007/s12024-022-00536-8. Epub 2022 Oct 8. Forensic Sci Med Pathol. 2022. PMID: 36208368 Free PMC article.

Šuligoj A, Mesesnel S, Leskovar T, Podovšovnik E, Zupanič Pajnič I. Šuligoj A, et al. Int J Legal Med. 2022 Nov;136(6):1521-1539. doi: 10.1007/s00414-022-02881-3. Epub 2022 Sep 1. Int J Legal Med. 2022. PMID: 36048257

Zhou J, Wang Y, Xu E. Zhou J, et al. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Dec 25;50(6):777-782. doi: 10.3724/zdxbyxb-2021-0180. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021. PMID: 35347913 Free PMC article. Review. English.